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� Abstract
Label-free and rapid classification of cells can have awide range of applications in biol-
ogy. We report a robust method of polarization diffraction imaging flow cytometry (p-
DIFC) for achieving this goal. Coherently scattered light signals are acquired from sin-
gle cells excited by a polarized laser beam in the form of two cross-polarized diffraction
images. Image texture and intensity parameters are extracted with a gray level co-
occurrence matrix (GLCM) algorithm to obtain an optimized set of feature parameters
as the morphological “fingerprints” for automated cell classification. We selected the
Jurkat T cells and Ramos B cells to test the p-DIFC method’s capacity for cell classifica-
tion. After detailed statistical analysis, we found that the optimized feature vectors yield
accuracies of classification between the Jurkat and Ramos ranging from 97.8% to 100%
among different cell data sets. Confocal imaging and three-dimensional reconstruction
were applied to gain insights on the ability of p-DIFC method for classifying the two
cell lines of highly similar morphology. Based on these results we conclude that the p-
DIFC method has the capacity to discriminate cells of high similarity in their morphol-
ogy with “fingerprints” features extracted from the diffraction images, which may be
attributed to subtle but statistically significant differences in the nucleus-to-cell volume
ratio in the case of Jurkat and Ramos cells. VC 2014 International Society for Advancement of

Cytometry
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BIOLOGICAL cells scatter light elastically due to heterogeneity in refractive index

and present intriguing patterns of scattering in space. The intensity and polarization

of the coherently scattered light correlate strongly with the intracellular distribution

of refractive index, thus yielding the possibility for three-dimensional (3D) morphol-

ogy based analysis and phenotyping of cells with no need for fluorescent or absorp-

tive staining (1–7). Label-free cell analysis according to morphology is particularly

useful for investigating cells that typically require multiple fluorescent probes or

labels. Examples include classification of lymphocyte subtypes for immunotherapy

of cancers (8,9), detection of circulating tumor epithelial cells in blood (10), and

study of stem cells (11). Furthermore, apoptotic cells, dividing cells, and immature

cells all present or undergo significant and characteristic changes in their cytoplasmic

and nuclear structures and investigations of these cells proceed best with no or mini-

mal extrageneous interferences such as staining (12,13). In these cases, rapid and

morphology based classification of cells without staining can be especially beneficial

and may find wide applications in basic cell biology research and drug development.

Light scattering by cells has been pursued within the platform of flow cytometry

in search for accurate methods to analyze single cells by recording the scattering
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patterns with discrete (2,14–16) or imaging sensors (17–23).

While these studies have confirmed clearly the correlation

between the intensity distribution of the scattered light and

cell morphology, very little is known on how to extract quan-

titative feature parameters from polarized light scattering pat-

terns for rapid and detailed analysis of cellular morphology

with a flow device. Existing flow cytometric (FCM) systems

acquire both fluorescent and scatter signals for cell assay. The

signals from the channels of forward scatter (FSC) and side

scatter (SSC), however, reflect only the cell volume and degree

of heterogeneity in intracellular distribution of refractive

index, which yield very limited information on cell morphol-

ogy and ability to distinguish cell types or quantify morpho-

logical changes (24). It has been shown that even with angle-

resolved measurement of scattered light one cannot distin-

guish the T and B lymphocytes (25). Previously we have devel-

oped a jet-in-fluid design of flow chamber and an objective

based off-focus imaging scheme to acquire high-contrast dif-

fraction images from cells carried by the core fluid of a lami-

nar flow (19,20,23,26). Unpolarized images were acquired

with one CCD camera and automated image analysis software

codes based on Fourier, Gabor transfer, and gray level co-

occurrence matrix (GLCM) algorithm were developed to rap-

idly extract image feature parameters (22,23,27). The above

approach has been termed as the diffraction imaging flow

cytometry (DIFC) method to stress the coherent nature of the

methodology that otherwise would be impossible using an

incoherent light source such as xenon lamp for cell excitation.

We have recently improved the DIFC method by simulta-

neously acquiring two cross-polarized diffraction images or a

polarization image pair per cell and developed an image proc-

essing and statistical analysis software to take the full advant-

age of the image pair data for cell classification. The

improvement leads to the polarization DIFC (p-DIFC)

method, which enables for the first time extraction of infor-

mation from polarized light scattering patterns for detailed

and label-free analysis of cells in an imaging flow cytometer.

In this report, we present the results of flow cytometric mea-

surement and statistical analysis of cross-polarized diffraction

image pairs acquired from the Jurkat T and Ramos B cells,

which were derived from malignant human lymphocytes.

Light scatter and fluorescence signals were also measured

from unstained and CD marker stained Jurkat and Ramos

cells using a conventional flow cytometer to compare with the

p-DIFC data. Furthermore, we performed confocal imaging

on the two cell lines to quantitatively compare their 3D mor-

phology and gain insights on the capability of the p-DIFC

method for distinction of the two cell lines.

MATERIALS AND METHODS

Cell Preparation and Conventional Flow Cytometric

Measurement

Jurkat and Ramos cells (ATCC, Manassas, VA), derived,

respectively, from human acute leukemia T and Burkitt lym-

phoma B lymphocytes, were cultured in the RPMI 1640

medium supplemented with 10% fetal bovine serum (Life

Technologies, Carlsbad, CA). Both cell lines were grown under

the same condition in a humidified tissue culture incubator

filled with 5% CO2 at 37�C. Viability of the cells for the p-

DIFC measurements was checked by the trypan blue exclusion

test and percentages of viable cells were found to be approxi-

mately 98%. A conventional flow cytometer (FACScan, Becton

Dickinson) was used to measure the forward and side light

scatter of the unstained cells. Both light scatter and fluorescence

signals were acquired from the cell lines co-stained with the

anti-human T cell marker CD3 (CD0304, Life Technologies)

and the B cell marker CD19 (MHCD1901, Life Technologies).

The p-DIFC Measurement

Details on the fluidic design of the p-DIFC method have

been given elsewhere (19,20,26). Briefly a “jet-in-fluid” flow

chamber design and an off-focus imaging configuration have

been developed and improved to markedly reduce the diffrac-

tion image noise (19,20) by eliminating refractive index-

mismatched interfaces near the imaged cells. A syringe pump

was used to drive the cell suspension in the RPMI 1640 media

as the core fluid into the flow chamber through a round glass

tube of inside diameter of 200 mm. With a concentric sheath

fluid at a higher pressure entering the same chamber, the cells

carried by the hydrodynamically focused core fluid move in

single-file and each elastically scatters light as it passes

through the focus of an incident beam. A continuous-wave

solid state laser (DPSS-532, Coherent) was used to produce

the incident beam of 532 nm in wavelength, 100 mW in

power, and TEM00 beam profile which was linearly polarized

with its direction set at horizontal, vertical or 45� from hori-

zontal using a half-wave plate. The side scatter signals were

collected with an infinity-corrected 503 objective of

NA 5 0.55 (378–805-3, Mitutoyo) followed by an interference

filter of transmission band centered at 532 nm with a band-

width of 10 nm (FL532-10, Thorlabs) and a polarizing beam

splitter (PBS251, Thorlabs). This allows acquisition of two

cross-polarized diffraction images per cell. The pair consists of

s- and p-polarized images to record scattered light of vertical

and horizontal polarization, respectively. The two CCD cam-

eras (LU075M, Lumenera) used to acquire and output the

data with images of 640 3 480 pixels and 12-bit pixel depth.

A schematic of the p-DIFC system is shown in Figure 1.

The polarizing split-view imaging unit consisting of the

objective, optics, and cameras was first aligned under a white

light incoherent illumination to focus on the cross point of

the hydrodynamically focused core fluid with incident beam

focus. Afterward, the imaging unit was translated toward the

flow chamber by a distance of Dx 5 100 lm for diffraction

imaging of the cells with the white light turned off. The speed

of image acquisition varies from 1 to 5 frame/s with the cam-

eras’ exposure time set at 1 ms and cells flowing at a very low

speed of about 4 mm/s through the incident laser beam to

reduce blurring (26). Each cell suspension was diluted to a

concentration of about 105 cells/ml and injected into the core

reservoir at room temperature of 22�C. The power of the inci-

dent laser beam was adjusted from 8 to 74 mW with neutral

density filters when the incident beam’s polarization was

Technical Note

818 Polarization Imaging and Classification



changed between cell measurements to reduce the number of

saturated images during each measurement.

Diffraction Image Analysis and Cell Classification

After data acquisition, the image pairs with pixels of sat-

urated intensities or of very weak total pixel intensities for

both images were removed. Additional image pairs with large

speckles were also removed since these have been shown to

associate with cellular debris instead of intact cells (27). The

diffraction images were then converted linearly from the 12-

bit image format of the raw image data, denoted as I12, into

normalized image format of 8-bit pixel depth, I8, in which

the minimum and maximum pixel intensities in I12 were set

to 0 and 255. The bit conversion is necessary to speed up the

subsequent extraction of image parameters by the GLCM

algorithm without significant loss of dynamic range (22,28).

We have developed image processing software to extract 17

texture parameters from each normalized I8 image based on

the GLCM algorithm and 2 normalized parameters of mini-

mum and maximum pixel intensities of the I12 image. The

normalization of pixel intensities by the average pixel inten-

sity was to remove the effect of different laser power used on

different cell samples and beam polarization as noted in

Table 1.

With the 19 parameters extracted from each image, the

image processing software performs cell classification based

on a supervised machine learning algorithm of support vector

machine (SVM) using an open-source code package (libsvm

2.86) (29). Four types of kernel functions have been tested in

this study: the Gaussian radial basis, sigmoid function, poly-

nomial function, and linear function. A kernel function is

employed in SVM to project each cell represented by its image

parameters nonlinearly into a multidimensional space in

which a hyperplane can be established to discriminate cells

linearly with the largest margin (30).

The SVM based classification is executed in two steps:

obtaining an optimized SVM model with a training set of data

of known types and testing selected models in a test set of

data of masked type identities. An SVM model consists of a

specific combination of image parameters assembled into a

feature vector and a kernel function that is used to map all

imaged cells in a data set into a feature space for classification.

Table 1. Experimental parameters and classification results by the p-DIFC method

CELL SAMPLE INCIDENT BEAM CELL TOTAL IMAGE TRAINING IMAGE TEST IMAGE
MCCav

a Aav(%)a

FIRST 3 COMPONENTS
SET POLARIZATION TYPE PAIR NTOT PAIR NTRA PAIR NTES TRAINING TEST TRAINING TEST OF FEATURE VECTORb (Nc)

#1 Vertical Jurkat 328 200 128 0.995 1.000 99.8 100 s-sa/s-m/s-nm (3)

Ramos 253 200 53

Horizontal Jurkat 1374 400 974 1.000 0.989 100 99.4 s-m/s-sa/s-se

Ramos 1046 400 646 (4)

45� Jurkat 606 400 206 0.985 0.983 99.3 99.3 s-m/s-sa/se

Ramos 899 400 499 (7)

#2 Vertical Jurkat 1630 1000 630 0.966 0.950 98.3 97.8 Same as #1-

Ramos 1277 1000 277 vertical

Horizontal Jurkat 1577 1000 577 0.957 0.960 97.9 98.1 Same as #1-

Ramos 1885 1000 885 horizontal

45� Jurkat 899 700 199 0.628 0.578 81.4 83.8 Same as #1-

Ramos 1530 700 830 45�

aThe values of MCCav and Aav were obtained with the optimized SVM model with Nc as the number of components in the feature vector

and polynomial kernel function.
bGLCM and pixel intensity parameters: sa, sum average; m, mean; nm, normalized maximum pixel intensity; se, sum entropy (28); s,

refers to the s-polarized diffraction image.

Figure 1. The schematic of a p-DIFC system: SYR, syringe; WP,

half-wave plate; FL, focusing lens; FLC, flow chamber; EXI, exit

tube; OBJ, objective; PBS, polarizing beam splitter; TL, tube lenses;

CCD, camera recording either s- or p-polarized scattered light.

[Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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The dimensionality of the feature space of an SVM model is

given by the number of components of or image parameters

in its feature vector. A training process is to obtain an opti-

mized SVM model with training data, which can be executed

in two different approaches. One can fully evaluates all image

parameters individually and rank them according to their

classification accuracy. Then a sequence of feature vectors is

constructed by adding the parameters one at a time according

to their ranking with a selected kernel function for a set of

SVM models. These models will be used to classify the imaged

cells in a training data set and the one with highest accuracy is

selected as the optimized one. Training SVM models in this

approach is very computing intensive and took up to 10 days

on five personal computers in the results presented here. SVM

model training can be achieved in an expedited approach

using an established SVM model by adjusting the numerical

ranges of the parameters in its feature vector only, which takes

at most a few hours to complete in comparison to the former

approach with full training. In our study, we divided the

image pairs in each data group of a specific beam polarization

randomly into two data sets of training and test. The full

training of SVM models was performed with the training data

in the first cell sample in Table 1 to obtain an optimized SVM

model. Then the same SVM model was trained expediently by

the training data of the second cell sample.

In assessing the classification performance among differ-

ent data sets, we define the following outcomes: TP as the

number of correctly identified image pairs acquired from

Ramos cells, TN as the number of correctly identified image

pairs from Jurkat cells, FP as the number of image pairs of

Jurkat cells but incorrectly identified as of Ramos cells, and

FN as the number of image pairs of Ramos cells but incor-

rectly identified as of Jurkat cells. The total number of the

image pairs in a data set is equal to the sum of TP, TN, FP,

and FN. The classification accuracy A is defined as

A5
TP1TN

TP1TN1FP1FN
: (1)

The Matthews correlation coefficient MCC is defined

below as the other metric of classification performance

MCC 5
TP 3TN 2FP 3FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP 1FP ÞðTP 1FN ÞðTN 1FP ÞðTN 1FN Þ
p : (2)

Different from the accuracy A, MCC accounts for both

false-positive and false-negative errors with a value between 1

and 21 with 1 indicating a perfect classification and 21 a

complete disagreement between the prediction and

measurement.

Confocal Imaging and Reconstruction

The cells to be imaged were first double stained for

nucleus and mitochondria with fluorescent dyes (Syto-61 and

Mitotracker Orange, Life Technologies). A laser scanning con-

focal microscope (LSM 510, Zeiss) was used with a 633

water-immersion objective and a 43 scan zoom on the

acquired image stacks. Each image stack consisted of about

40–60 slices with a 0.5 mm step size in air along the z-axis. The

confocal image slices in a stack were first segmented using an

in-house developed software followed by z-scale correction

and interpolation of additional image slices for 3D reconstruc-

tion with cubic voxels (31). A total of 27 morphological

parameters were calculated based on the voxels of the different

cellular components in a reconstructed cell. We used the SPSS

software (Version 19, IBM) to perform the two-sample t-tests

of the 3D parameters and obtain respective P-values between

the two cell lines.

RESULTS AND DISCUSSION

Measurement and Analysis of Diffraction Images by

the p-DIFC Method

Two sets of samples were measured with the p-DIFC

method on different days in which each set consisted of one

Jurkat and one Ramos cell suspension sample. Cross-

polarized diffraction image pairs of 12-bit pixels, I12, were

acquired from each of about 1,000–2,000 cells for each sample

with linearly polarized incident beam varied among vertical,

horizontal, and 45�. Figure 1 presents the experimental setup

and Figure 2 shows examples of the normalized 8-bit image

pairs, I8, for each incident beam polarization. The GLCM

based image processing yielded a total of 38 parameters from

each image pair for an imaged cell and these parameters were

assembled into feature vectors in different combinations to

represent the imaged cells in a multidimensional feature space.

We applied the SVM algorithm to statistically evaluate the fea-

ture vectors with the training data and obtain an optimized

one for cell classification, which serves as the quantitative fin-

gerprints for distinguishing the two cell lines. Table 1 lists the

cell numbers in the training and test data sets of the two cell

samples.

To obtain an optimized SVM model through full train-

ing, we first evaluated the individual performance of 38 image

parameters based on A and MCC. Five tests of classification

were conducted on the training data set for each parameter

using an iterating scheme of five-fold cross-validation. The

scheme randomly divides the training data set into five equal

parts with one part being used as a test assembly and the

remaining four parts as a training assembly. The procedure

was repeated five times with A and MCC calculated each time

to obtain their average values as Aav and MCCav. After rank-

ing of the 38 image parameters with decreasing MCCav, or Aav

in the cases of divergent MCC, a total of 152 (538 3 4) SVM

models were established by adding the ranked image parame-

ters one at a time to construct 38 feature vectors with each of

the four kernel functions. Therefore, the feature vectors in a

set of 38 SVM models with a selected kernel function have

their number of components or image parameters increases

from 1 to 38. Table 1 provides the definitions of top three

image parameters and corresponding Aav and MCCav obtained

with the polynomial kernel function in each training data set

acquired with one of the three different beam polarizations
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for the first sample set. Figure 3 shows the performance of

classification for four sets of SVM models with four different

kernel functions in terms of Aav and MCCav on the training

data set. Additional data and classification results are provided

in Table 1. One can see from Figure 3 that SVM models with

both polynomial and linear kernel functions perform well for

classification and the former does slightly better when applied

to all data from both cell sample sets.

With these results we concluded that the accurate classifi-

cation of the Jurkat and Ramos cells can be achieved robustly

under the conditions of using either the polynomial or linear

kernel function for the SVM model and the vertical or

Figure 2. Examples of normalized cross-polarized image pairs of I8 for two Jurkat and two Ramos cells in each group of beam polarization

acquired from the first sample set. The white pixels are of maximum light intensity and black pixels of minimum intensity. Each image is

labeled with the polarization of the incident beam, polarization of scattered light, maximum, average, and minimum pixel intensities of

the corresponding I12 images.
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horizontal for the incident beam polarization. The best overall

results of Aav and MCCav for classifying the Jurkat and Ramos

cells were obtained with the polynomial kernel function and a

feature vector of only three image parameters from the dif-

fraction image pairs acquired with the vertical beam

polarization.

Cell Measurement by the FCM Method

To acquire baseline data for comparison with the p-DIFC

data, samples of the two cell lines were measured using a con-

ventional FCM system (FACScan, Becton Dickinson). Cell

samples were prepared under the condition of either

unstained or co-stained by the anti-human T cell marker CD3

(CD0304, Life Technologies) and the B cell marker CD19

(MHCD1901, Life Technologies). Each sample measurement

was performed on 10,000 cells. Light signals were acquired

with a wavelength of 488 nm for excitation and scatter mea-

surement, an emission filter centered at 578 nm for measure-

ment of fluorescence by R-PE conjugated CD 3, and another

filter centered at 519 nm for FITC conjugated CD19. Signal

gating was implemented by the FSC and SSC signals to pre-

vent the presence of debris, doublets, and triplets in the meas-

ured data. The plots of the light scatter signals presented in

Figures 4A and 4B show clearly that the distributions of the

angularly integrated light scatter signals of the two cell lines

have significant overlap and they do not allow accurate classi-

fication of the two cell lines. The fluorescence signals in Figure

4C also confirm that the Jurkat cells are CD31 and Ramos

cells are CD191 as expected.

Confocal Measurement and Quantitative Comparison

of 3D Morphology

The Jurkat and Ramos cells were imaged with a confocal

microscope followed by reconstruction for quantitative exam-

ination of their morphology using a previously in-house

developed software (31) to understand the capability of the p-

DIFC method for classifying the two cell lines. The 3D param-

eters were obtained from the reconstructed structures to com-

pare their similarity and difference in morphology. Figure 5

represents perspective views of reconstructed cells of the two

cell lines depicted in two colors with three major morphologi-

cal parameters listed for each cell. By comparing these individ-

ual cells, one can clearly see that the morphology varies quite

significantly even among the cells within the same line. A total

Figure 3. The averaged accuracy Aav and MCCav versus the maximum number of image parameters in a feature vector Nmax. The results

were obtained by performing SVM classification with four different kernel functions in the training data set with feature vectors con-

structed by the image parameters sequenced according to their rankings. RBF denotes the Gaussian radial basis kernel function. The dif-

fraction images were acquired from the first sample set with a vertically polarized incident laser beam. The lines are for visual guide.
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of 45 Jurkat cells and 60 Ramos cells were imaged and ana-

lyzed, after which 27 parameters were obtained for individual

cells to characterize their 3D morphology. Table 2 presents the

values of mean and standard deviations of 16 key parameters

derived from each of the two groups of 45 Jurkat and 60

Ramos cells. Table 2 also includes the results of statistical sig-

nificance testing in terms of the P-value on the difference of

parameters between the two cell groups. By examining the dif-

ferences of the mean value, standard deviations and the P-

value, one can confirm that the Jurkat and Ramos cells as two

groups are highly similar in morphology in terms of their vol-

umes, surface areas and shapes of the cell, nucleus and mito-

chondria. One exception is the volume ratios of nucleus to

cell, which exhibits a statistically significant difference with P

<0.05. The parameters related to mitochondria exhibit con-

siderable fluctuations as indicated by the relatively large stand-

ard deviations as a result of the small sizes of the organelles

for imaging.

Comparison of the p-DIFC and 3D Morphology Data

The T and B subpopulations of lymphocytes were discov-

ered by identifying their differences associated with immune

responses (32,33) and the two cell types have been widely

deemed as morphologically indistinguishable and can only be

separated by fluorescent surface markers (34). Consequently

accurate and label-free classification of the lymphocyte subpo-

pulations or cell lines derived from them presents a challenge

of fundamental interest (25) and is of practical importance to

study of immune cells (35). Quantitative results of 3D mor-

phological measurement show clearly that the two cell lines

exhibit higher similarity between them than the case of the

primary T and B cells extracted from human spleen tissues

(data not shown here). Consequently the results reported

present strong evidences in support of the p-DIFC method to

extract and obtain an optimized set of diffraction image

parameters as the “fingerprints” encoded by the 3D morpho-

logical traits of the imaged cells for classification.

We note from Table 1 that among the three polarization

directions of the incident laser beam the vertical and horizon-

tal polarizations yield the best results in distinguishing the

Jurkat and Ramos cells. To understand the effect of beam

polarization, a framework of Mueller–Jones matrices is useful

(5,36). For the 45� polarized incident beam represented by a

Jones vector, two 4 3 4 Mueller matrices can be used to

express a cell’s ability to scatter and the polarizing beam split-

ter to obtain the p-polarized scattered light as

Figure 4. The scatter plots of the FCM data from 10,000 Jurkat or Ramos cells: (A) side (SSC) versus forward (FSC) light scatter signals of

unstained cells with the mean values of the FSC(SSC) given by 352(193) and 341(332) for Jurkat and Ramos cells, respectively, and CV val-

ues by 24.7%(53.1%) and 27.5%(50.0%); (B) SSC versus FSC of cells co-stained by CD3 and CD19 with the mean values of the FSC(SSC)

given by 355(189) and 375(414) for Jurkat and Ramos cells, respectively, and CV values by 24.3%(52.8%) and 27.5%(50.0%); (C) fluores-

cence signals of CD3 versus CD19 of the co-stained cells with the mean values of the CD19(CD3) given by 11.2(940) and 459(20.4) for Jurkat

and Ramos cells, respectively, and CV values by 372%(102%) and 140%(192%). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Technical Note

Cytometry Part A � 85A: 817�826, 2014 823

http://wileyonlinelibrary.com


Table 2. Morphological parameters of Jurkat and Ramos cells

MEAN 6 STANDARD DEVIATION

PARAMETER SYMBOL UNIT JURKAT (N 5 45)a RAMOS (N 5 60)a P a

Cell volume Vc
b mm3 663.7 6 308 666.5 6 296 0.962

Cell surface area Sc
c mm2 36.85 6 11.3 36.49 6 10.7 0.867

Surface to volume ratio of cell SVrc mm21 0.05954 6 0.0121 0.05947 6 0.0141 0.996

Index of surface irregularity of cell ISIc
d mm21/2 201.7 6 28.5 199.7 6 20.6 0.678

Average distance of cell membrane voxels to centroid <Rc> mm 6.797 6 2.14 7.110 6 2.45 0.495

Standard deviation of Rc DRc mm 1.841 6 0.721 2.051 6 0.854 0.186

Nuclear volume Vn mm3 407.8 6 199 367.4 6 185 0.285

Nuclear surface area Sn mm2 29.79 6 11.1 27.17 6 9.09 0.187

Index of surface irregularity of nucleus ISIn mm21/2 206.8 6 42.1 204.3 6 28.9 0.716

Mitochondrial volume Vm mm3 33.40 6 38.6 32.1 6 34.8 0.853

Mitochondrial surface area Sm mm2 40.48 6 56.2 33.98 6 51.0 0.538

Surface to volume ratio of mitochondria SVrm mm21 0.9490 6 0.266 0.8738 6 0.199 0.100

Index of surface irregularity of mitochondria ISIm mm21/2 731.3 6 695 677.0 6 550 0.656

Distance between the centroids of nucleus and cell Dnc mm 0.1760 6 0.053 0.1597 6 0.048 0.096

Volume ratio of nucleus to cell Vrnc – 0.6280 6 0.126 0.5479 6 0.143 0.004

Volume ratio of mitochondrion to cell Vrmc – 0.0526 6 0.066 0.0484 6 0.055 0.662

an, number of imaged cells, P is based on a two-sample t-test method.
bV 5 Nv�V0 with Nv as the number of voxels inside the organelle of interest and V0 as voxel volume.
cS 5 Ns�S0 with Ns as the number of voxels on the membrane of the organelle and S0 as the side surface of voxel.
dISI 5 Ns�a0/(V)1/2 with a0 as the side length (50.07 mm) of voxel.

Figure 5. Perspective views of reconstructed 3D structures of individual (A) Jurkat and (B) Ramos cells (not to scale). The definitions of the

morphological parameters are given in Table 2. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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It is easy to show that Eq. (3) leads to the pixel intensities

of the p-polarized diffraction image recorded by a camera as

angularly resolved distribution given below

Ip;45�5 M111M13ð Þ1 M211M23ð Þ: (4)

Similarly, one can derive that the Jones vector for the s-

polarized scattered light is given by
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(5)

which yields the pixel intensities of the s-polarized images as

Is;45�5 M111M13ð Þ2 M211M23ð Þ: (6)

Using the same approach, we can show that the pixel

intensities of each image pairs acquired with the incident

beam of vertical and horizontal polarizations can be written

as
Ip;ver 5ðM112M12Þ1ðM212M22Þ; (7)

Is;ver 5ðM112M12Þ2ðM212M22Þ; (8)

and
Ip;hor 5ðM111M12Þ1ðM211M22Þ; (9)

Is;hor 5ðM111M12Þ2ðM211M22Þ: (10)

By comparison of the above equations from Eq. (4) to

(10), it becomes obvious that the different degrees of disparity

between the p- and s-polarized diffraction images depends

sensitively on certain elements Mij of the imaged cell for dif-

ferent beam polarizations. If the vertical and horizontal beam

polarization provides the maximum disparity, as indicated by

the data in Table 1, then the elements M21 and M22 are most

likely the responsible elements. These conclusions are sup-

ported by our previous measurements of the Mueller matrix

elements of multiple HL-60 promyelocytic cells and NALM-6

pre-B cells using a goniometer, which show the high sensitiv-

ity of the elements M12, M21, M22, and M23 to cell morphology

(37).

The results yield strong evidences that the cross-polarized

image pair acquired by the p-DIFC method adds an intriguing

flow cytometric capability for cell classification. Specifically,

the best result of classification was achieved for the incident

beam of vertical polarization in Table 1 with three image

parameters. Among the three, the first two are GLCM parame-

ters of sum average and mean to quantify image texture (28)

and the third one is a pixel intensity parameter of maximum-

divided-by-mean, all calculated from the s-polarized images.

Similarly, the best classfication for the incident beam of hori-

zontal polarization was achieved with three GLCM parameters

of sum average, sum entropy and mean together with the pixel

intensity parameter of maximum-divided-by-mean from the

s-polarized images. It is intersting to note that among the dif-

fraction image pairs shown in Figure 2 the s-polarized images

tend to have distinct textures than those in the p-polarized

ones between the two cell lines. To quantitatively correlate

these “fingerprints” image parameters to the morphological

featus of cells, one needs to develop accurate models of light

scattering by cellular structures as presented in Figure 5. We

have previously established numerical methods (27,38), which

are currently improved with detailed intracellular organelles

such as mitochondria to obtain numerical and realistic polar-

ized diffraction images through Eqs. (3) to (10) for clear

understanding of the correlations between the GLCM parame-

ters and morpohlogical features of the cells.

The mechanism underlying the p-DIFC ability to distin-

guish the two cell lines may be traced to the morphology of a

cell in terms of its refractive index distribution. The two cell

lines can be seen from the data in Table 2 to possess subtle but

statistically significance differences in their nuclear and possi-

bly mitochondria structures relative to the overall structures.

While the differences are extremely difficult, if not impossible,

to observe in two dimensional (2D) microscopic images, they

nevertheless can quantified through 3D measurement. The

possible correlation is consistent with the light scatter data

between Figures 4A and 4B acquired from four different sam-

ples of 10,000 cells by the FCM system. Even though these sig-

nals are angularly integrated and do not allow accurate

separation, a close examination produces clear evidences that

the light scatter signals distribute quite differently between the

two cell lines. Indeed, experimental and numerical modeling

results of light scattering by biological cells by other research-

ers (39) as well as ours (6) support the conclusion that varia-

tions in nuclear morphology can produce quantifiable

changes in the spatial distribution of unpolarized scattered
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light as represented by the element M11. We have also analyzed

numerically the effect of the nucleus and mitochondria on the

patterns of diffraction images with previously developed

finite-difference-time-domain (FDTD) and discrete-dipole-

approximation (DDA) models of light scattering (22,27) using

reconstructed 3D cell structures. The results suggest that the

differences in nuclear volume, or the volume ratio of nucleus

to cell as presented in Table 2, and shapes can lead to observ-

able changes in the GLCM parameters extracted from the dif-

fraction image data. The correlations of the changes between

the nuclear morphology and GLCM parameters, however, are

convoluted among the volume, shape and values of refractive

index heterogeneity of the nucleus and mitochondria.

Detailed numerical study is underway to understand their

relations clearly and develop an effective mapping method.

CONCLUSION

We have shown through this study that the Jurkat T and

Ramos B cells are of highly similar 3D morphology using a

confocal imaging method. With the cross-polarized diffrac-

tion image pairs it has been demonstrated that the automated

extraction of image texture and intensity parameters can serve

as the “fingerprints” of a cell type, which enable robust and

highly accurate classification of the two lymphocyte cell lines

according to the subtle differences in nuclear morphology.
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Polarization Imaging and Classification of

Jurkat T and Ramos B Cells Using a Flow

Cytometer

Yuanming Feng, Ning Zhang, Kenneth M. Jacobs, Wenhuan Jiang, Li V. Yang, Zhigang Li,
Jun Zhang, Jun Q. Lu, Xin-Hua Hu*

Table 2. Morphological parameters of Jurkat and Ramos cells

PARAMETER SYMBOL UNIT

MEAN 6 STANDARD DEVIATION

PaJURKAT (N545)a RAMOS (N560)a

Cell volume Vc
b mm3 663.7 6 308 666.5 6 296 0.962

Cell surface area Sc
c mm2 526.4 6 162 521.3 6 153 0.867

Surface to volume ratio of cell SVrc mm21 0.8495 6 0.168 0.8493 6 0.207 0.996

Index of surface irregularity of cell ISIc
d mm21/2 201.7 6 28.5 199.7 6 20.6 0.678

Average distance of cell membrane voxels to centroid <Rc> mm 6.797 6 2.14 7.110 6 2.45 0.495

Standard deviation of Rc DRc mm 1.841 6 0.721 2.051 6 0.854 0.186

Nuclear volume Vn mm3 407.8 6 199 367.4 6 185 0.285

Nuclear surface area Sn mm2 425.5 6 158 388.2 6 130 0.187

Index of surface irregularity of nucleus ISIn mm21/2 206.8 6 42.1 204.3 6 28.9 0.716

Mitochondrial volume Vm mm3 33.40 6 38.6 32.1 6 34.8 0.853

Mitochondrial surface area Sm mm2 578.3 6 803 485.5 6 728 0.538

Surface to volume ratio of mitochondria SVrm mm21 13.56 6 3.80 12.48 6 2.84 0.100

Index of surface irregularity of mitochondria ISIm mm21/2 731.3 6 695 677.0 6 550 0.656

Distance between the centroids of nucleus and cell Dnc mm 0.1760 6 0.053 0.1597 6 0.048 0.096

Volume ratio of nucleus to cell Vrnc - 0.6280 6 0.126 0.5479 6 0.143 0.004

Volume ratio of mitochondrion to cell Vrmc - 0.0526 6 0.066 0.0484 6 0.055 0.662

an 5 number of imaged cells, P is based on a two-sample t-test method.
bV 5 Nv�V0 with Nv as the number of voxels inside the organelle of interest and V0 as voxel volume.
cS 5 Ns�S0 with Ns as the number of voxels on the membrane of the organelle and S0 as the side surface of voxel.

ISI 5 Ns�a0/(V)1/2 with a0 as the side length (50.07mm) of voxel.
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IN the recently published Cytometry Part A article [85A: 817 –

826, 2014; doi: 10.1002/cyto.a.22504], the mean and standard

deviation values of 5 parameters on the surface area and surface

to volume ratio in Table 2 are erroneous due to a software

mistake in area calculations. Other parameters including the P-

values in Table 2 are correct and all discussion and conclusions

remain unchanged. The corrected Table 2 should read as

follows:
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